Nowadays, social networks play a crucial role in human everyday life and no longer purely associated with spare time spending. In fact, instant communication with friends and colleagues has become an essential component of our daily interaction giving a raise of multiple new social network types emergence. By participating in such networks, individuals generate a multitude of data points that describe their activities from different perspectives and, for example, can be further used for applications such as personalized recommendation or user profiling. However, the impact of the different social media networks on machine learning model performance has not been studied comprehensively yet. Particularly, the literature on modeling multi-modal data from multiple social networks is relatively sparse, which had inspired us to take a deeper dive into the topic in this preliminary study. Specifically, in this work, we will study the performance of different machine learning models when being learned on multi-modal data from different social networks. Our initial experimental results reveal that social network choice impacts the performance and the proper selection of data source is crucial.
User profile learning, such as mobility and demographic profile learning, is of great importance to various applications. Meanwhile, the rapid growth of multiple social platforms makes it possible to perform a comprehensive user profile learning from different views. However, the research efforts on user profile learning from multiple data sources are still relatively sparse, and there is no large-scale dataset released towards user profile learning. In our study, we contribute such benchmark and perform an initial study on user mobility and demographic profile learning. First, we constructed and released a large-scale multi-source multimodal dataset from three geographical areas. We then applied our proposed ensemble model on this dataset to learn user profile. Based on our experimental results, we observed that multiple data sources mutually complement each other and their appropriate fusion boosts the user profiling performance.
Wellness is a widely popular concept that is commonly applied to fitness and self-help products or services. Inference of personal wellness-related attributes, such as Body Mass Index (BMI) category or diseases tendency, as well as understanding of global dependencies between wellness attributes and users’ behavior is of crucial importance to various applications in personal and public wellness domains. At the same time, the emergence of social media platforms and wearable sensors makes it feasible to perform wellness profiling for users from multiple perspectives. However, research efforts on wellness profiling and integration of social media and sensor data are relatively sparse, and this study represents one of the first attempts in this direction. Specifically, we infer personal wellness attributes by utilizing our proposed multi-source multitask wellness profile learning framework — “WellMTL”, which can handle data incompleteness and perform wellness attributes inference from sensor and social media data simultaneously. To gain insights into the data at a global level, we also examine correlations between first-order data representations and personal wellness attributes. Our experimental results show that the integration of sensor data and multiple social media sources can substantially boost the performance of individual wellness profiling.
Webcelebs has mentioned SoMin.ai tech in their article: "Puma Introduces Virtual Influencer Maya to Promote Brand in South East Asia"
Puma is tapping into the rising trend of computer-generated virtual influencers representing brands on Instagram.
En se basant sur les publications de Donald Trump sur les réseaux sociaux, une IA développée par deux établissements universitaires a déterminé que le président des États-Unis était en réalité célibataire. Pas sûr que Melania Trump apprécie.
The 45th US President Donald Trump may not love to tweet about this but scientists do have a surprising news for him: The 70-year-old Trump who is actually married appears single if his boisterous behaviour on social media is taken into account.
A team from ITMO University in Saint Petersburg, Russia, and National University of Singapore created an algorithm that predicts user marital status with 86 per cent precision using data from three social networks - Twitter, Instagram and Foursquare.